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Lie groups approach in differential equations was a breakthrough subject in the late

nineteenth century. Sophus Lie, a Norwegian mathematician, introduced the systematic

approach to study the solutions of differential equations. The main goal of this thesis is to

study, using Lie’s approach, the Euler-Bernoulli beam equation subject to swelling force, the

fourth-order nonlinear differential equation used to describe the beam deflection under the

swelling force. In particular, we will classify the symmetry groups of this equation, obtain

several reductions, and demonstrate both analytical and numerical solutions.

KEYWORDS: Lie Groups, Differential Equations, Euler-Bernoulli Beam, Analytical Solu-

tion
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CHAPTER I: INTRODUCTION

In the nineteenth century, Norwegian mathematician Sophus Lie proposed the sys-

tematic way (Lie groups method) of studying the properties of the solutions of differential

equations [Li]. He introduced the possibility of finding these solutions based on the invariance

of a system of differential equations under the continuous groups of transformations.

Our motivation is to exploit Lie’s technique for studying the solution properties, and

obtain possible reductions of the Euler-Bernoulli beam equation subject to swelling force.

In particular, we are interested in studying the fourth order nonlinear differential equation

with the exponential term uxxxx = Ke−Bu that is used to describe the deflections of retaining

wall under the soil pressure. This differential equation has no known analytical solution. All

details about this equation are introduced from the beginning of Chapter II.

Nowadays scholars from different scientific fields exploit the Lie groups method to

analyze the properties of solutions of differential equations from various important research

questions, including the Euler-Bernoulli beam equation. For instance, Bokhari et.al. [BoZM]

classified the symmetry groups of Euler-Bernoulli beam equation with different forms of

the force term including the exponential but raised by the positive u. They reduced the

equation to the second-order ODE, however the analytical solution was left for further study.

Their reduction differs from our reduction because they used different invariants for the

canonical coordinates that resulted from using the solvability of algebra. Wei and Liu [WeL]

provided the analytic solutions of the power-law Euler-Bernoulli beam equation with means

of general integration, but not for an exponential force term. Wei et.al. [WeLDMJ] designed

and implemented two numerical procedures for calculating the deflection of the retaining

1
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walls. This was the first attempt to design and implement numerical procedures for such

a mathematical model. Wei et.al. [WeZhK] proved the well-posedness, and showed the

existence and uniqueness of the solution of the model for the dynamic behavior of a cantilever

Euler beam subject to a nonlinear swelling load. Ruiz et.al. [RuMR] obtained the exact

general solution to a static fourth-order Euler-Bernoulli beam equation with the force term

to be u−5/3. They expressed the solution in parametric form in terms of Weierstress elliptic

functions. However, they did not consider the case with exponential force term. Bidisha and

Ranjan [BiR] classified the Lie groups of the dynamic Euler-Bernoulli beam equation with

the axial load and found an exact solution, but again not for the case of exponential term.

Shakipov [Sh] provided the numerical solution of the Euler-Bernoulli beam equation with

swelling force by using the finite element method.

In this thesis we will give our overview of Lie’s approach to classify the symme-

try groups, perform some reductions, and analyze the properties of solutions of the Euler-

Bernoulli beam equation subject to swelling force.

2
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CHAPTER II: BACKGROUND

The following fourth order nonlinear differential equation is called the Euler-Bernoulli

beam equation [Ti], which describes the relationship between the deflection of a beam subject

to certain applied force

EIuxxxx = f(x) (1)

where E is the modulus of elasticity, I is the area moment of inertia, uxxxx = d4u
dx4

, and f(x)

is the function that represents some applied load depending on the physical phenomena of

interest. Figure 1. demonstrates the deflection of the beam under some applied force.

Figure 1: Beam deflection after f(x) is applied.

II.1 Euler-Bernoulli Beam Equation With Swelling Force

One of the interesting examples of the applied load is when f(x) = e−u. This function

is used to explain the physical phenomena when the retaining wall is subject to a swelling

3
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force coming from the expansive soils. For instance, the walls, that are used to protect a

highway or hillside farms from the soil shifts due to heavy rains [JaN], can be modeled using

this differential equation.

The swelling pressure to the wall is defined by the function

σ = σ010−
u
cd (2)

where σ0 is the maximum pressure, and c, d are certain constants. For the distributed load,

we need the height of the wall, s , which gives us the applied force

f(x) = sσ010−
u
cd . (3)

Eventually, simplifying the expression above gives us the Euler-Bernoulli beam equation

with swelling force as

uxxxx = Ke−Bu (4)

where K = sσ0
EI

, B = ln(10)
cd

, and with the boundary conditions

u(0) = ux(0) = 0

uxx(L) = uxxx(L) = 0

(5)

where 0 and L are the endpoints of the wall.

(Note: for the sake of convenience, we will use K = B = 1 in our future analysis.)

4
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II.2 Modified Euler-Bernoulli Beam Equation

We find it helpful to modify the Euler-Bernoulli beam equation by multiplying both

sides by −ux as follows:

−uxuxxxx = −uxe−u

uxxuxxx − (uxuxxx)x = (e−u)x[
1

2
u2xx

]
x

− (uxuxxx)x = (e−u)x

(6)

then we integrate both sides to get the modified Euler-Bernoulli beam equation of order

3

1

2
u2xx − uxuxxx = e−u + C (7)

for some constant C. This equation is useful only if ux 6= 0, otherwise, it will lead to

singularity. But for the analysis purpose, we can approximate ux to be a very small value,

if needed, and use it, for instance, in our numerical approximations.

5



www.manaraa.com

CHAPTER III: LIE SYMMETRY GROUPS

In this chapter, we will overview the brief history of Lie symmetry groups of differ-

ential equations followed by the concepts that are necessary to understand the study done

in this thesis. We will recall the concepts of manifolds in III.2, Lie groups in III.3, tangent

space and vector fields in III.4, Lie Algebras in III.5, and finally symmetry groups in III.6.

III.1 Brief History

Sophus Lie was particularly inspired by Galois’s theory which is related to symmetries

of the roots of polynomial [BeB]. In general, he discovered that if the discrete invariance

group of a system of algebraic equations can be used to solve this system by ”radicals”, then

continuous invariance groups of systems of differential equations can be used for solving

these systems by ”quadratures” (i.e. by integration). In general, the idea is to exploit the

invariance of differential equations under the transformation of independent and dependents

variables. The following figures (2a,2b) demonstrates the transformation of some differential

equation

III.2 Manifolds

It is important to know the concept of “manifolds” as we want to view the set of

solutions to our system of differential equations as submanifold or a larger manifold.

Definition 0.1. [[Ol], Def. 1.1] An m-dimensional manifold is a topological space M ,

together with a countable collection of open subsets Uα ⊂ M , called coordinate charts,

and homeomorphisms χα : Uα → Vα onto connected open subsets Vα ⊂ Rm, called local

6
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(a) The surface of x dy
dx + yxy2 = 0. dy

dx is plot-
ted over (x, y)

(b) x dy
dx + yxy2 = 0. is transformed to T/R+

1 − R = 0. T is plotted over (S,R), where
S = ln(x), R = xy, and T = x2 dy

dx .

Figure 2: An example of transformation [Gi].

coordinate maps, which satisfy the following properties:

• The coordinate charts cover M :

⋃
α

Uα = M (8)

• On the overlap of any pair of coordinate charts Uα ∩ Uβ the composite map

χβ ◦ χ−1α : χα(Uα ∩ Uβ)→ χβ(Uα ∩ Uβ) (9)

is a smooth (infinitely differentiable) function.

• If x ∈ Uα, x̃ ∈ Uβ are distinct points of M , then there exist open subsets W ⊂ Vα,

W̃ ⊂ Vβ, with χα(x) ∈ W , χβ(x̃) ∈ W̃ , satisfying

χ−1α (W ) ∩ χ−1β (W̃ ) = ∅. (10)

7
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III.3 Lie Groups

To get invariant solutions in the sense of Lie, we need an appropriate concept of a

group acting smoothly on a manifold. Towards this end, we have the concept of a Lie group.

Definition 0.2. [[Ol], Def. 1.16] An r-parameter Lie group is a group G which also car-

ries the structure of an r-dimensional smooth manifold in such a way that both the group

operation

m : G→ G, m(g, h) = g · h, g, h ∈ G, (11)

and the inversion

i : G→ G, i(g) = g−1, g ∈ G, (12)

are smooth maps between manifolds.

Our primary concern is with local solutions, so we adapt the above to a local context.

In fact, the core concept of Lie’s approach to differential equations is the one-parameter Lie

groups which is associated with the transformations of manifolds.

Definition 0.3. [[Ol], Def. 1.20] An r-parameter local Lie group consists of connected open

subsets V0 ⊂ V ⊂ Rr containing the origin 0, and smooth maps

m : V × V → Rr, (13)

8
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defining the group operation, and

i : V0 → V, (14)

defining the group inversion, with the following properties.

(a) Associativity. If x, y, z ∈ V , and also m(x, y) and m(y, z) are in V , then

m(x,m(y, z)) = m(m(x, y), z). (15)

(b) Identity Element. For all x in V , m(0, x) = x = m(x, 0).

(c) Inverses. For each x in V0, m(x, i(x)) = 0 = m(i(x), x).

Now we consider a local group action on a manifold.

Definition 0.4. [[Ol], Def. 1.25] LetM be a smooth manifold. A local group of transformations

acting on M is given by a (local) Lie group G, an open subset U , with

{e} ×M ⊂ U ⊂ G×M, (16)

and a smooth map Ψ : U →M with the following properties:

(a) If (h, x) ∈ U , (g,Ψ(h, x)) ∈ U , and also (g · h, x) ∈ U , then

Ψ(g,Ψ(h, x)) = Ψ(g · h, x). (17)

9
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(b) For all x ∈M ,

Ψ(e, x) = x. (18)

(c) If (g, x) ∈ U , then (g−1,Ψ(g, x)) ∈ U and

Ψ(g−1,Ψ(g, x)) = x. (19)

III.4 Tangent Space and Vector Fields

It is usually hard to work solely with local Lie groups without using the concepts of

tangent spaces and vector fields for linearization in the group action.

Definition 0.5. [[AbSG], Def. 9.1] A tangent vector v|x to Rn consists of a pair of elements

v, x of Rn; v is called the vector part and x is called the point of application of v|x.

Definition 0.6. [[Ol], p. 25] The collection of all tangent vectors to all possible curves

passing through a given point x in M is called the tangent space to M at x, and is denoted

by TM |x.

The fundamental tool in the Lie’s theory and transformation groups is the “infinites-

imal transformation” which is based on using the concept of vector field on a manifold.

Definition 0.7. [[Ol], p. 26] A vector field v on M assigns a tangent vector v|x ∈ TM |x

to each point x ∈ M , with v|x varying smoothly from point to point. In local coordinates

10
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(x1, . . . , xm), a vector field has the form

v|x = ξ1(x)
∂

∂x1
+ ξ2(x)

∂

∂x2
+ . . .+ ξm(x)

∂

∂xm
(20)

where each ξi(x) is a smooth function of x.

Definition 0.8. [[Ol], Def. 1.44] The Lie algebra of a Lie group G, denoted by g, is the vec-

tor space of all right-invariant vector fields on G. That is, the vector space of transformations

h→ hg for ∀h ∈ G, and fixed g ∈ G.

III.5 Symmetry Groups

Consider the system ∆ of m partial differential equations of order n

∆ν(x, u
(n)) = 0, ν = 1, . . . ,m (21)

with p independent variables, x = (x1, . . . , xp), and q dependent variables, u = (u1, . . . , uq),

where we use u(n) to denote the derivatives of u with respect to x up to order n.

Definition 0.9. [[Ol], Def. 2.23] A symmetry group of the system (21) is a local group

of transformations G acting on an open subset M = X × U of the space of independent

variables X and the space of dependent variables U for the system ∆ν with the property

that whenever u = f(x) is a solution of (21), and whenever g · f is defined for g ∈ G, then

u = g · f(x) is also a solution of the system.

11
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Let

v =

p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

ϕα(x, u)
∂

∂uα
(22)

be a vector field where ξi and ϕα are the coefficient functions of x and u. Continuous

transformations groups are assumed to be connected, thus, we can work with infinitesimal

generators that form a Lie algebra of vector fields (22) on the space of independent and

dependent variables. The group transformations in G are obtained by the process of expo-

nentiation of the infinitesimal generators of the corresponding Lie algebra. Therefore, the

one-parameter group G = {gε|ε ∈ R} is the solution gε · (x0, u0) = (x(ε), u(ε)) to the first

order system of differential equations

dxi

dε
= ξi(x, u),

duα

dε
= ϕα(x, u) (23)

with initial conditions (x0, u0) at ε = 0. The transformations in G act not only on functions

u = f(x) but also on their derivatives, hence, induces “prolonged transformations”. The

prolonged infinitesimal generators are vector fields on the space of independent and depen-

dent variables and their derivatives which are uαJ = ∂Juα

∂xJ
, where J = (j1, . . . , jk) represents a

k-tuple of integers with 1 ≤ jν ≤ p showing which derivatives are taken, and 1 ≤ α ≤ q are

indices that distinguish the dependent variables (Notice that, in our case p = q = 1). We

define the prolongation of the vector field v to be

pr(n)v =

p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

ϕαJ(x, u(n))
∂

∂uαJ
. (24)

12
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The coefficients in (24) are expressed as

ϕαJ(x, u(n)) = DJQ
α +

p∑
i=1

ξiuαJ,i (25)

where DJ is the total derivative with respect to independent variable(s) x = (x1, . . . , xp),

showing exactly which derivatives are taken, and Qα is known as characteristic of the vector

field (22). We express Q as following

Qα(x, u(1)) = ϕα(x, u)−
p∑
i=1

ξi(x, u)
∂uα

∂xi
. (26)

Theorem 1. [[Ol], Thm. 2.31] A connected group of transformations G is a symmetry group

of the system of differential equations (21) if and only if the classical infinitesimal symmetry

criterion

pr(n)v[∆ν(x, u
(n))] = 0, ν = 1, . . . , r (27)

holds for every infinitesimal generator v of G.

13
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CHAPTER IV: ALGORITHM FOR FINDING THE LIE SYMMETRY GROUPS

Below we summarize the Lie’s technique, using Olver’s textbook [Ol], of finding the

symmetry groups of differential equations and then apply it to our Euler-bernoulli beam

equation. The step-by-step algorithm is described as following

1. Obtain the vector field for the differential equation of order n with p independent and

q dependent variables.

2. Obtain the n-th prolongation of that vector field.

3. Apply this prolonged vector field over the differential equation in order to get the form

satisfying the infinitesimal symmetry criterion.

4. Find the expressions of the terms in the equation above using the formula (25).

5. Construct the system of determining equations obtained by equating the coefficients

of the monomials to zero.

6. Solve the system.

7. Substitute solutions into the vector field in step 1.

8. Obtain the span of vector field and recover the symmetry groups by exponentiation

method as shown in (23).

14
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IV. 1 Lie Symmetries Of Euler-Bernoulli Beam Equation

Theorem 2. For Euler-Bernoulli beam equation with swelling force (4), the Lie algebra of

infinitesimal symmetries is spanned by

v1 = ∂x, v2 = x∂x + 4∂u, (28)

and the one-parameter groups are

G1 : (x+ ε, u), G2 : (eεx, u+ 4ε) (29)

Therefore, if u = f(x) is a solution of Euler-Bernoulli beam equation (4), then the following

transformed forms are also the solutions.

u1 = f(x− ε), u2 = f(e−εx)− 4ε (30)

for any real number ε.

Proof of Theorem 2. We will follow the algorithm stated in Chapter IV.

Step 1. Since the Euler-Bernoulli beam equation has 1 independent and 1 dependent

variables, that is p = q = 1, the vector field is

v = ξ∂x + ϕ∂u (31)

15
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Step 2. The order of the equation is 4, so we get the fourth prolongation which is

pr(4)v = v + ϕx
∂

∂ux
+ ϕxx

∂

∂uxx
+ ϕxxx

∂

∂uxxx
+ ϕxxxx

∂

∂uxxxx
(32)

Steps 3 and 4. Applying the prolonged vector field over the equation (4) yields

ϕxxxx + ϕe−u = 0 (33)

whenever uxxxx = e−u. The corresponding computations and Mathematica code for finding

the expressions are included in APPENDIX A.

Steps 5 and 6. By equating the coefficients of monomials to zero, we obtain the

system of determining equations as shown in Table 1 below. According to (i), ξ does not

depend on u. (m) and (j) suggest that ϕ depends only on x. From (a), we reveal that ξ is

linear in x, so

ξ = c2x+ c1 (34)

for arbitrary constants c1 and c2. By looking at (j) we can say that ϕ is defined by the form

ϕ = 4c2. (35)

Step 7. Substituting (34) and (35) into (31) yields

v = (c2x+ c1)∂x + 4c2∂u, (36)

16
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Monomial Coefficient

uxxx −ξxx + 4ϕxu = 0 (a)

u2xx −12ξxu + 3ϕuu = 0 (b)

uxx −4ξxxx + 6ϕxxu = 0 (c)

u5x −ξuuuu = 0 (d)

u4x −ξxuuu + ϕuuuu = 0 (e)

u3x −6ξxxuu + 4ϕxuuu = 0 (f)

u2x −4ξxxxu + 6ϕxxuu = 0 (g)

ux −ξxxxx + 4ϕxxxu = 0 (h)

uxuxxxx −5ξu = 0 (i)

uxxxx −4ξx + ϕu + ϕ = 0 (j)

uxxuxxx −10ξu = 0 (k)

u2xuxxx −10ξuu = 0 (l)

uxuxxx −16ξxu + 4ϕuu = 0 (m)

u3xu
2
xx −10ξuuu = 0 (n)

u2xuxx −24ξxuu + 6ϕuuu = 0 (o)

uxu
2
xx −15ξuu = 0 (q)

uxuxx −18ξxxu + 12ϕxuu = 0 (p)

1 ϕxxxx = 0 (r)

Table 1: Equations for ϕxxxx + ϕuxe
−u = 0.

which is spanned by v1 = ∂x and v2 = x∂x + 4∂u.

Step 8. By the construction shown in (23), we get the following characteristics

v1 : dx
dε

= 1

v2 : dx
dε

= x, du
dε

= 4.

(37)

Solving the above with the initial conditions at ε = 0, we get the following transformations

v1 : x(ε) = x0 + ε

v2 : x(ε) = x0e
ε, u(ε) = u0 + 4ε.

(38)

17
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Then, the one parameter groups are

G1 : (x+ ε, u), G2 : (eεx, u+ 4ε) (39)

for any real number ε. Then, by Definition 0.9, we complete the proof of the results shown

in Theorem 2.

In general, the main conclusion of this theorem says that by knowing one analytical

solution, we can obtain other solutions using the transformations presented in the theorem.

In particular, if u = f(x) is a solution to the Euler-Bernoulli beam equation, then the

transformations, for any real ε, u1 = f(x− ε) and u2 = f(e−ε)− 4ε are also the solutions of

the Euler-Bernoulli beam equation. Later, we will link this result to the analytical solution

in Chapter VII and see more details.

IV. 2 Lie Symmetries Of Modified Euler-Bernoulli Beam Equation

Theorem 3. For the modified Euler-Bernoulli beam equation (7), the Lie algebra of in-

finitesimal symmetries is spanned by

v1 = ∂x, v2 =
1

4
x∂x + ∂u. (40)

The one-parameter groups are

G1 : (x+ ε, u), G2 : (eε/4x, u+ ε). (41)

18
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Therefore, if u = f(x) is a solution of modified Euler-Bernoulli beam equation (7), then the

following transformed forms are also the solutions.

u1 = f(x− ε), u2 = f(e−ε/4x)− ε (42)

for any real number ε.

Proof of Theorem 3. We will follow the algorithm stated in Chapter IV.

Step 1. Since the modified Euler-Bernoulli beam equation has 1 independent and 1

dependent variables, that is p = q = 1, the vector field is

v = ξ∂x + ϕ∂u. (43)

Step 2. The order of the equation is 3, so we get the third prolongation which is

pr(3)v = v + ϕx
∂

∂ux
+ ϕxx

∂

∂uxx
+ ϕxxx

∂

∂uxxx
. (44)

Steps 3 and 4. Applying the prolonged vector field over the equation (7) yields

ϕxxuxx − ϕxuxxx − ϕxxxux = −ϕe−u (45)

whenever 1
2
u2xx − uxuxxx − e−u −C = 0 holds. The corresponding computations and Mathe-

matica code are included in APPENDIX B.

Steps 5 and 6. Then we obtain the system of determining equations which is shown

in Table 2. From the equations (a),(b) and (c) we can easily see that
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Monomial Coefficient

uxxx −ϕx = 0 (a)

uxuxxx −2ϕu + 4ξx − ϕ = 0 (b)

u2xuxxx 5ξu = 0 (c)

u5x ξuuu = 0 (d)

u4x 3ξxuu − ϕuuu = 0 (e)

u3x 3ξxxu − 3ϕxuu = 0 (f)

u2x ξxxx − 3ϕxxu = 0 (g)

ux −ϕxxx = 0 (h)

u3xuxx 5ξuu = 0 (i)

u2xuxx 7ξxu − 2ϕuu = 0 (j)

uxuxx 2ξxx − ϕxu = 0 (k)

uxx ϕxx = 0 (l)

Table 2: Equations for ϕxxuxx − ϕxuxxx − ϕxxxux = −ϕe−u.

ϕ = c2, ξ =
1

4
c2x+ c1 (46)

for some arbitrary constants c1 and c2.

Step 7. Substituting (46) into (43) yields

v = (
1

4
c2x+ c1)∂x + c2∂u (47)

which is spanned by v1 = ∂x and v2 = 1
4
x∂x + ∂u.

Step 8. By the construction shown in (23), we get the following characteristics

v1 : dx
dε

= 1

v2 : dx
dε

= 1
4
x, du

dε
= 1.

(48)
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Solving the above with the initial conditions at ε = 0, we get the following transformation

v1 : x(ε) = x0 + ε

v2 : x(ε) = x0e
ε/4, u(ε) = u0 + ε.

(49)

Then, the one parameter groups are

G1 : (x+ ε, u), G2 : (eε/4x, u+ ε) (50)

for any real number ε. Then, by Definition 0.9, we complete the proof of the results shown

in Theorem 3.

The main conclusion of this theorem is that by knowing one analytical solution, we

can obtain other solutions using the transformations presented in the theorem. In particular,

if u = f(x) is a solution to the modified Euler-Bernoulli beam equation, then the transfor-

mations, for any real ε, u1 = f(x − ε) and u2 = f(e−ε/4) − ε are also the solutions of the

modified Euler-Bernoulli beam equation.

Also we can see that the symmetry groups of the modified Euler-Bernoulli beam

equation is very similar to those of the original equation. That means we did not lose the

symmetry properties of the equation by using the modification.

Overall, since we found the Lie symmetry groups of the differential equations (4) and

(7), we will overview some reduction methods (Chapters V and VII) and use them to reduce

the orders of these equations
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CHAPTER V: REDUCTION METHOD 1

This method arises from one of the greatest results from Lie groups, which are canoni-

cal coordinates. The main idea is that the symmetry transformation in the actual coordinate

system is the one-parameter group translation (see the Definitions 0.2 and 0.3) in the canon-

ical coordinate system. Suppose the differential equation has 1 independent variable and 1

dependent variable, x and u, respectively (as in our case). We are interested in the canonical

coordinates

y = η(x, u) w = ζ(x, u) (51)

such that in this coordinate system the transformed Euler-Bernoulli beam equation admits

the group with infinitesimal generator ∂
∂w

. If the infinitesimal generator of the group of the

original equation is v = ξ(x, u) ∂
∂x

+ ϕ(x, u) ∂
∂u

, then we are interested in the solution of the

following characteristic system

v(η) = ξ
∂η

∂x
+ ϕ

∂η

∂u
= 0

v(ζ) = ξ
∂ζ

∂x
+ ϕ

∂ζ

∂u
= 1.

(52)

Notice that, since we want the one-parameter group translation in w = ζ(x, u), only the

second equation in the above is equal to 1. The equation of η can be found by solving the

characteristic equation dx
ξ

= du
ϕ

. The second equation in (52) is usually solved by observation.

It is important to know that this method of reduction is not always the best choice

since the canonical coordinates can be complicated for the reduction process depending on
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the form of the infinitesimal generator. Moreover, the reduction may not work at all because

of the form of the equation itself. We will present this outcome in the following chapter.

V.1 Reduction Method 1 For Euler-Bernoulli Beam Equation

Suppose we apply the reduction method 1 to the Euler-Bernoulli beam equation that

admits one of its symmetry groups with v1 = ∂
∂x

(as presented in chapter IV.1). Then the

following theorem is obtained.

Theorem 4. The Euler-Bernoulli beam equation (4) that admits the symmetry group with

v1 = ∂
∂x

reduces to the following third order differential equation

10z−6zyzyy − z−5zyyy − 15z−7z3y = e−y (53)

where z = wy = u−1x and y = u.

Proof of Theorem 4. We will use the reduction method 1 as explained in the beginning of

this chapter.

For the one-parameter group with an infinitesimal generator v1 = ∂
∂x

, the system

v1(η) =
∂η

∂x
= 0

v1(ζ) =
∂ζ

∂x
= 1

(54)

has a solution η(x, u) = u and ζ(x, u) = x. Hence, we have the change of variables as

y = η(x, u) = u w = ζ(x, u) = x. (55)
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By expressing the fourth order derivative term of our Euler-Bernoulli beam equation in terms

of these coordinates, we obtain

uxxxx =
1

w7
y

(
10wywyywyyy − w2

ywyyyy − 15w3
yy

)
. (56)

Letting z = wy reduces the Euler-Bernoulli beam equation to the third order differential

equation

10z−6zyzyy − z−5zyyy − 15z−7z3y = e−y. (57)

By using this method, we reduced the order of the Euler-Bernoulli beam equation

by one with the infinitesimal generator v1 = ∂
∂x

. But this reduction method is unsuccessful

with v2 = x∂x + 4∂u, because the canonical coordinates

y = η(x, u) = xe−u/4 w = ζ(x, u) = ln(x), (58)

which are obtained from solving the characteristic system as shown in (52), are complicated

to work with. For instance, the expression of wy by using the chain rule is

wy =
dw

dy
=
dw

dx

dx

dy
+
dw

du

du

dy
=

1

x

[(
e−u/4 − 1

4
xuxe

−u/4
)−1
−
(
xuxe

−u/4)−1] (59)

and further derivations are even more complicated. Furthermore, the reduction process

would not be completed, simply because in this case u = ln(x/y) and x is dependent on w
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which eliminates the possibility of doing the replacement z = wy. This demonstrates the

disadvantage of the reduction method 1.

V.2 Reduction Method 1 For Modified Euler-Bernoulli Beam Equation

Suppose we apply reduction method 1 to the modified Euler-Bernoulli beam equation

that admits one of its symmetry groups with v1 = ∂
∂x

(as presented in chapter IV.2). Then

the following theorem is obtained.

Theorem 5. The modified Euler-Bernoulli beam equation (7) that admits the symmetry

group with v1 = ∂
∂x

reduces to the following second order differential equation

zzyy −
5

2
z2y = z6e−y, (60)

where z = wy = u−1x and y = u.

Proof of Theorem 5. We will use the reduction method 1 as explained in the beginning of

this chapter.

As this system has also one-parameter group with an infinitesimal generator v1 = ∂
∂x

,

similarly, we have the same change of variables

y = η(x, u) = u w = ζ(x, u) = x. (61)

By using the chain rule, we obtain the following expressions

ux =
du

dx
=

1

wy
, uxx =

d2u

dx2
= −wyy

w3
y

, uxxx =
d3u

dx3
=

3w2
yy − wywyyy

w5
y

. (62)
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Substituting (62) into the equation and letting z = wy, we obtain the second order differential

equation

zzyy −
5

2
z2y = z6e−y. (63)

Again, with v2 = 1
4
x∂x + ∂u, the canonical coordinates obtain similar complicated

forms as it was demonstrated for the case of the original Euler-Bernoulli beam equation.
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CHAPTER VI: REDUCTION METHOD 2

We will now use the concept called ”differential invariants” that helps us to determine

other reduced forms of the equation that admit the same symmetry groups. Basically, if

v1 = ξ1 ∂
∂x1

+. . .+ξm ∂
∂xm

+ϕ1 ∂
∂u1

+. . .+ϕk ∂
∂uk

is the infinitesimal generator from the symmetry

group G1 of the differential equation with m independent and k dependent variables, then

we construct the characteristic equation

dx1

ξ1
= . . . =

dxm

ξm
=
du1

ϕ1
= . . . =

duk

ϕk
(64)

and its solution provides the differential invariants.

Definition 0.10. [[Ol], Def. 2.51] Let G be a local group of transformations acting on

M ⊂ X ×U , where X is the space of independent variables and U is the space of dependent

variables. An n-th order differential invariant of G is a smooth function η : M (n) −→ R,

depending on x, u and derivatives of u, such that η is an invariant under the prolonged

group action

η(pr(n)g · (x, u(n))) = η(x, u(n)), (x, u(n)) ∈M (n) (65)

for all g ∈ G such that pr(n)g · (x, u(n)) is defined.

Here M (n) is an n-jet space of M that is the extension of the X × U and consists

of the coordinates that represent the independent variables, dependent variables, and the

derivatives of dependent variables up to order n.

27



www.manaraa.com

Lemma 1. The differential equation with 1 dependent and 1 independent variables that

admits the symmetry group with an infinitesimal generator v = ξ ∂
∂x

+ϕ ∂
∂u

, the characteristic

equation is

dx

ξ
=
du

ϕ
=
dux
0

(66)

and we have the invariants η(x, u) = c1 and ζ(x, u) = c2 where c1, c2 are the constants of

integration from the characteristic (66).

Proof of Lemma 1. By directly using the characteristic equation (64).

Proposition 1. [[Ol], Prop. 2.56] Let η1(x, u(n)), . . . , ηk(x, u(n)) be a complete set of func-

tionally independent n-th order differential invariants. An n-th order differential equation

∆(x, u(n)) = 0 admits G as a symmetry group if and only if there is an equivalent equation

∆̃(η1(x, u(n)), . . . , ηk(x, u(n))) = 0 (67)

involving only the differential invariants of G. In particular, if G is a one-parameter group

of transformations, any n-th order differential equation having G as a symmetry group is

equivalent to an (n− 1)-st order equation

∆̃(y, w, dw/dy, . . . , dn−1w/dyn−1) = 0 (68)

involving the invariants y = η(x, u) and w = ζ(x, u, ux) of pr(1)G and their derivatives.

The advantage of this method over the reduction method 1 is that it does not require
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the replacement z = wy. This allows us to use also the second infinitesimal generator of the

symmetry group of both the Euler-Bernoulli and the modified Euler-Bernoulli beam equa-

tions in order to obtain the reductions. More details will be demonstrated in the following

chapters.

VI.1 Reduction Method 2 For Euler-Bernoulli Beam Equation

Suppose we apply the reduction method 2 to the Euler-Bernoulli beam equation that

admits its symmetry groups with v1 = ∂
∂x

and v2 = x∂x+4∂u (as presented in chapter IV.1).

Then the following theorem is obtained.

Theorem 6. The Euler-Bernoulli beam equation (4) that admits the symmetry groups with

v1 = ∂
∂x

and v2 = x∂x + 4∂u reduces to the following third order differential equation (69)

and third order integro-differential equation (70)

w3wyyy + wywyy(3w
−5 + w2) + w3

y(3w
−8 − 2w) = e−y, (69)

where w = ux, y = u, and

wyyyB
4 + 2(uxxx − wyA)A+ (uxxxA+ uxxC)B = e−u, (70)

where A = − 1
x2
− 1

4
uxx, B = 1

x
− 1

4
w, C == 2

x3
− 1

4
uxxx, uxx = wyB and uxxx = wyyB

2 +wyA,

u =
∫
wdx, and x = ey+

1
4

∫
wdx.

Proof of Theorem 6. We will use the reduction method 2 as explained in the beginning of

this chapter.
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For this system, the characteristic equation from the infinitesimal generator v1 = ∂
∂x

from Lemma 1 is

dx

1
=
du

0
=
dux
0

(71)

and its solution gives us the following change of variables

y = u w = ux (72)

with w = f(y), that is ux = f(u). The derivative expressions in terms of these new coordi-

nates are

wy =
dw

dy
=
dw/dx

dy/dx
=
uxx
ux

wyy =
dwy/dx

dy/dx
=
uxxxw − (wwy)

2

w3

wyyy =
1

w3

[
uxxxx − w3

y(3w
−8 − 2w)− wywyy(3w−5 + w2)

]
.

(73)

So, in terms of (y, w) coordinates, the Euler-Bernoulli beam equation reduces to the third

order differential equation

w3wyyy + wywyy(3w
−5 + w2) + w3

y(3w
−8 − 2w) = e−y. (74)

Similarly, the characteristic equation from the infinitesimal generator v2 = x∂x + 4∂u from
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Lemma 1 is

dx

x
=
du

4
=
dux
0

(75)

and its solution gives us the following change of variables

y = ln(x)− 1

4
u w = ux (76)

with w = f(y), that is ux = f(ln(x)− 1
4
u). Since the derivative expressions in terms of these

new coordinates are complicated (see APPENDIX C), we show the final result, that is the

integro-differential equation of order 3

wyyyB
4 + 2(uxxx − wyA)A+ (uxxxA+ uxxC)B = e−u, (77)

where A = − 1
x2
− 1

4
uxx, B = 1

x
− 1

4
w, C = 2

x3
− 1

4
uxxx, uxx = wyB and uxxx = wyyB

2 +wyA,

u =
∫
wdx, and x = ey+

1
4

∫
wdx.

As can be seen, we were able to obtain the reduction (third order integro-differential

equation) by using the infinitesimal generator v2. Now we will try this method for our

modified equation in the following section.

VI.2 Reduction Method 2 For Modified Euler-Bernoulli Beam Equation

Suppose we apply the reduction method 2 to the modified Euler-Bernoulli beam

equation that admits its symmetry groups with v1 = ∂
∂x

and v2 = 1
4
x∂x + ∂u (as presented
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in chapter IV.2). Then the following theorem is obtained.

Theorem 7. The modified Euler-Bernoulli beam equation (7) that admits the symmetry

groups with v1 = ∂
∂x

and v2 = 1
4
x∂x + ∂u reduces to the following second order differential

equation (78) and third order integro-differential equation (79)

−1

2
(wwy)

2 − wyyw3 = e−y + C, (78)

where w = ux, y = u, and

1

2
w2
y(

4

x
− w)2 − w(wyy(4/x− w)2 + wy(−

4

x2
− wy(

4

x
− w))) = e−u + C, (79)

where x = e(y+
∫
wdx)/4 and u =

∫
wdx.

Proof of Theorem 7. We will use the reduction method 2 as explained in the beginning of

this chapter.

The characteristic equation from the infinitesimal generator v1 = ∂
∂x

from Lemma 1

is

dx

1
=
du

0
=
dux
0

(80)

and its solution gives us the following change of variables

y = u w = ux (81)

with w = f(y), that is ux = f(u). The derivative expressions in terms of these new coordi-
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nates are

wy =
dw

dy
=
dw/dx

dy/dx
=
uxx
ux

wyy =
dwy/dx

dy/dx
=
uxxxux − u2xx

u3x
.

(82)

So our equation in terms of (y, w) coordinates becomes the second order differential equation

−1

2
(wwy)

2 − wyyw3 = e−y + C. (83)

Similarly, the characteristic equation from the infinitesimal generator v2 = 1
4
x∂x + ∂u from

Lemma 1 is

dx

1/4x
=
du

1
=
dux
0

(84)

and its solution gives us the following change of variables

y = 4ln(x)− u w = ux (85)

with w = f(y), that is ux = f(4ln(x)− u). The derivative expressions in terms of these new

coordinates are

wy =
dw

dy
=
dw/dx

dy/dx
=

uxx
4/x− w

wyy =
dwy/dx

dy/dx
=
uxxx − wy(−4/x2 − uxx)

(4/x− w)2
.

(86)

So, our equation in terms of (y, w) coordinates becomes the second order integro-differential
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equation

1

2
w2
y(

4

x
− w)2 − w(wyy(4/x− w)2 + wy(−

4

x2
− wy(

4

x
− w))) = e−u + C, (87)

where x = e(y+
∫
wdx)/4 and u =

∫
wdx.

Again, we were able to derive the reduced form (second order integro-differential

equation) by using the reduction method 2 since it works with v2.
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CHAPTER VII: ANALYTICAL AND NUMERICAL SOLUTIONS

In this section, we bring some examples of using the reductions of Euler-Bernoulli

beam equation for our purpose of finding potential analytical and numerical solutions. We

will compare our results with the existing numerical solution found with finite element

method by Shakipov [Sh] which is shown below in Figure 3. Finite element method is widely

Figure 3: Finite element solution of uxxxx = Ke−Bu.

used numerical method that is used to solve differential equations with many application in

engineering and other fields [Hu]. The main point of this method is to divide the domain of

the whole system into smaller finite parts (so-called ”finite elements”) and transform them

into a set of linear equations that is solved by using any of existing numerical methods [Am].

Finite element is the method of choice in many scientific fields as it is able to solve highly

complicated problems with small error.
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VII.1 One Analytical Solution Of The Euler-Bernoulli Beam Equation Using Its Reduced

Form

We try to find the explicit solution of our equation of interest (4) by using the following

reduced form as shown in Theorem 4, but with K and B being unknown which yields to

10z−6zyzyy − z−5zyyy − 15z−7z3y = Ke−By, (88)

where z = u−1x and y = u. Our guess function is z = eay+b. We substitute this expression

into the reduced equation (88) and we obtain

−6a3e3ay = Ke4be(7a−B)y. (89)

Then we get the following equations

3a = 7a−B − 6a3 = Ke4b. (90)

Solving for a and b, the solution of the equation will take the form

u =
1

a
ln(ax+ eb)− b

a
, (91)

where a = B
4

and b = 1
4
ln(6a

K
) + iπ(2n+1)

4
for n = 1, 2, 3, . . .. Fitting this solution to the

solution from finite element approximation gives us the good nonlinear least-squares fit

shown in Figure 4. The main problem of this analytical solution is that the third and fourth

boundary conditions in (5) are not met. However, we still find the solution useful since the
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Figure 4: Fitting the finite element solution of Euler-Bernoulli beam equation with u = 1
a ln(ax+

eb)− b
a with R-squared = 0.988.

Theorem 2 tells us that the followings are also the solutions of the Euler-Bernoulli beam

equation.

u1 =
1

a
ln(a(x− ε) + eb)− b

a
(92)

u2 =
1

a
ln(e−εax+ eb)− b

a
− 4ε (93)

for any real number ε, a = B
4

and b = 1
4

[
ln(6a

K
) + iπ + 2iπn

]
for n = 1, 2, 3, . . ..

VII.2 Numerical Solution Of The Reduced Form Of The Euler-Bernoulli Beam Equation

Now we try to demonstrate the approach to numerically solve the reduced form of the

Euler-Bernoulli beam equation from Theorem 5 but with K and B being unknown which

yields

zzyy −
5

2
z2y =

K

B
z6e−By (94)
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Figure 5: Numerical solution of zzyy − 5
2z

2
y = z6e−y vs. finite element solutions of Euler-Bernoulli

beam equation.

where z = u−1x and y = u. Slight modification can be done to this equation by letting f = z

and g = zy which gives us the following pair of differential equations

fy = g

gy =
1

f

(
5

2
g2 +

K

B
e−Byf 6

)
,

(95)

where fy = df
dy

and gy = dg
dy

. This pair resembles the dynamic system that can be solved

numerically with given initial values. We use the Python package called GEKKO [BeHMH],

which is the modern tool that uses various numerical methods for solving complicated sys-

tems, to obtain the solution of (95). Figure 5 shows the numerical result and comparison

with the finite element approximation of Euler-Bernoulli beam equation (Python code is

included in APPENDIX D). The interesting idea behind the solution of this reduced form is

that it reverses the way of our original problem is solved. In particular, if we wanted to solve

the beam deflection u for some given length x, then by (95) we solve for the length x of the

beam for given deflection values u. As we can see from Figure 5, the maximum length given

by finite element result coincides with the maximum length found by solving the equation
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(95). This is indeed the useful approach for the retaining wall deformation problems, since

the maximum deflection can be enough information for engineering solutions.
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CHAPTER VIII: RESULTS AND DISCUSSION

At this point, other than classifying the Lie symmetry groups for both original and

modified Euler-Bernoulli beam equations, our work resulted in 6 different reductions of the

Euler-Bernoulli beam equation. In particular, below is the summary of results.

Original Euler-Bernoulli beam equation: uxxxx = e−u .

The corresponding reduced forms are

• Third order differential equation

10z−6zyzyy − z−5zyyy − 15z−7z3y = e−y

where z = u−1x and y = u.

• Third order differential equation

w3wyyy + wywyy(3w
−5 + w2) + w3

y(3w
−8 − 2w) = e−y

where w = ux and y = u.

• Third order integro-differential equation

wyyyB
4 + 2(uxxx − wyA)A+ (uxxxA+ uxxC)B = e−u

where A = − 1
x2
− 1

4
uxx, B = 1

x
− 1

4
w, C == 2

x3
− 1

4
uxxx, uxx = wyB and uxxx =

wyyB
2 + wyA, u =

∫
wdx, x = ey+

1
4

∫
wdx, w = ux and y = ln(x)− 1

4
u.
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Modified form of Euler-Bernoulli beam equation:
1

2
u2xx − uxuxxx = e−u + C . The

corresponding reduced forms are

• The second order differential equation

zzyy −
5

2
z2y = z6e−y

where z = u−1x and y = u.

• The second order differential equation

−1

2
(wwy)

2 − wyyw3 = e−y + C

where w = ux and y = u

• The second order integro-differential equation

1

2
w2
y(

4

x
− w)2 − w(wyy(4/x− w)2 + wy(−

4

x2
− wy(

4

x
− w))) = e−u + C

where x = e(y+
∫
wdx)/4, u =

∫
wdx, w = ux, and y = 4ln(x)− u.

Most of these reductions are highly nonlinear and seem hard to be solved analytically, how-

ever, we now know some classification of equations that admit the same Lie symmetries as

Euler-Bernoulli beam equation does. Furthermore, our attempt to solve it both analytically

and numerically by using some of its reduced forms shows that there are possibilities of un-

derstanding the properties of the solution by analyzing the rest of its transformed equations.
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Also, we created the new perspective of working with the Euler-Bernoulli beam equation.

In particular, by numerically solving one of its reduced forms, we understood that instead

of solving the beam deformation values for some given beam length, we can also find the

beam length for some given deformation values. This observation may be unusual for the

civil engineers, but we think this question is worth considering.

Finally, several future directions of our work can be listed with the following research

questions, such as

• Are there any Lie symmetry groups of the reduced equations?

• Can we obtain further reductions of the reduced equations by applying the Lie groups

methods?

• What are the possible applications of the reduced equations? For instance, what are the

applications of the transformation for when the wall deflection becomes an independent

variable, and the wall length becomes a dependent variable.

• What are the reductions for other types of fourth-order differential equations using the

methods described in this work?
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APPENDIX A: COMPUTATIONS AND MATHEMATICA CODE FOR

APPLYING THE FOURTH PROLONGATION ON uxxxx = e−u

pr(4)v(uxxxx) = pr(4)v(e−u)

ξuxxxx + ϕxxxx = −ξuxe−u − ϕe−u

ϕxxxx + ϕe−u = −ξ(uxxxxx + uxe
−u)

since d
dx

(uxxxx) = d
dx

(e−u), we have

ϕxxxx + ϕe−u = 0

Below is the code and its corresponding output of computing ϕxxxx.

Input:

[
∂4

∂x ∂x ∂x ∂x

(
ϕ(x, u(x))− ξ(x, u(x))

∂u(x)

∂x

)
+ ξ(x, u(x))

∂5u(x)

∂x ∂x ∂x ∂x ∂x

]

46



www.manaraa.com

Output:

−10u′′(x)u(3)(x)ξ(0,1)(x, u(x))− 5u′(x)u(4)(x)ξ(0,1)(x, u(x)) + u(4)(x)ϕ(0,1)(x, u(x))

−15u′(x)u′′(x)2ξ(0,2)(x, u(x))− 10u′(x)2u(3)(x)ξ(0,2)(x, u(x)) + 3u′′(x)2ϕ(0,2)(x, u(x))

+4u′(x)u(3)(x)ϕ(0,2)(x, u(x))− 10u′(x)3u′′(x)ξ(0,3)(x, u(x)) + 6u′(x)2u′′(x)ϕ(0,3)

(x, u(x))− u′(x)5ξ(0,4)(x, u(x)) + u′(x)4ϕ(0,4)(x, u(x))− 4u(4)(x)ξ(1,0)(x, u(x))− 12u′′(x)2

ξ(1,1)(x, u(x))− 16u′(x)u(3)(x)ξ(1,1)(x, u(x)) + 4u(3)(x)ϕ(1,1)(x, u(x))− 24u′(x)2u′′(x)

ξ(1,2)(x, u(x)) + 12u′(x)u′′(x)ϕ(1,2)(x, u(x))− 4u′(x)4ξ(1,3)(x, u(x)) + 4u′(x)3ϕ(1,3)

(x, u(x))− 6u(3)(x)ξ(2,0)(x, u(x))− 18u′(x)u′′(x)ξ(2,1)(x, u(x)) + 6u′′(x)ϕ(2,1)(x, u(x))

−6u′(x)3ξ(2,2)(x, u(x)) + 6u′(x)2ϕ(2,2)(x, u(x))− 4u′′(x)ξ(3,0)(x, u(x))− 4u′(x)2

ξ(3,1)(x, u(x)) + 4u′(x)ϕ(3,1)(x, u(x))− u′(x)ξ(4,0)(x, u(x)) + ϕ(4,0)(x, u(x))
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APPENDIX B: COMPUTATIONS AND MATHEMATICA CODE FOR

APPLYING THE THIRD PROLONGATION ON 1
2
u2xx − uxuxxx = e−u + C

pr(3)v(1
2
u2xx − uxuxxx) = pr(3)v(e−u + C)

−ξuxuxxxx − ϕxuxxx + ϕxxuxx − ϕxxxux = −ξuxe−u − ϕe−u

−ϕxuxxx + ϕxxuxx − ϕxxxux = ξ(uxuxxxx − uxe−u)− ϕe−u

since uxxxx = e−u and uxuxxxx − uxe−u = 0 assuming ux 6= 0, we have

ϕxxuxx − ϕxuxxx − ϕxxxux = −ϕe−u

The code and its corresponding output of computing ϕx.

Input:

∂

∂x

(
ϕ(x, u(x))− ξ(x, u(x))

∂u(x)

∂x

)
+ ξ(x, u(x))

∂2u(x)

∂x ∂x

Output:

−u′(x)
(
u′(x)ξ(0,1)(x, u(x))− ϕ(0,1)(x, u(x)) + ξ(1,0)(x, u(x))

)

+ϕ(1,0)(x, u(x))

The code and its corresponding output of computing ϕxx.
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Input:

∂2

∂x ∂x

(
ϕ(x, u(x))− ξ(x, u(x))

∂u(x)

∂x

)
+ ξ(x, u(x))

∂3u(x)

∂x ∂x ∂x

Output:

−3u′(x)u′′(x)ξ(0,1)(x, u(x)) + u′′(x)ϕ(0,1)(x, u(x))− u′(x)3ξ(0,2)(x, u(x))

+u′(x)2ϕ(0,2)(x, u(x))− 2u′′(x)ξ(1,0)(x, u(x))− 2u′(x)2ξ(1,1)(x, u(x))

+2u′(x)ϕ(1,1)(x, u(x))− u′(x)ξ(2,0)(x, u(x)) + ϕ(2,0)(x, u(x))

The code and corresponding output of computing ϕxxx.

Input:

∂3

∂x ∂x ∂x

(
ϕ(x, u(x))− ξ(x, u(x))

∂u(x)

∂x

)
+ ξ(x, u(x))

∂4u(x)

∂x ∂x ∂x ∂x
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Output:

u(3)(x)ϕ(0,1)(x, u(x))− 3u(3)(x)
(
u′(x)ξ(0,1)(x, u(x)) + ξ(1,0)(x, u(x))

)

+u′′(x)ϕ(1,1)(x, u(x)) + 2u′′(x)
(
u′(x)ϕ(0,2)(x, u(x)) + ϕ(1,1)(x, u(x))

)

−3u′′(x)
(
u′′(x)ξ(0,1)(x, u(x)) + u′(x)ξ(1,1)(x, u(x)) + u′(x)

(
u′(x)ξ(0,2)(x, u(x))

+ξ(1,1)(x, u(x)) + ξ(2,0)(x, u(x)) + u′(x)ϕ(2,1)(x, u(x)) + u′(x) (u′(x)

ϕ(1,2)(x, u(x)) + ϕ(2,1)(x, u(x)) + u′(x)
(
u′′(x)ϕ(0,2)(x, u(x)) + u′(x)

ϕ(1,2)(x, u(x)) + u′(x)
(
u′(x)ϕ(0,3)(x, u(x)) + ϕ(1,2)(x, u(x))

)

+ϕ(2,1)(x, u(x))− u′(x)
(
u(3)(x)ξ(0,1)(x, u(x)) + u′′(x)ξ(1,1)(x, u(x))

+2u′′(x)
(
u′(x)ξ(0,2)(x, u(x)) + ξ(1,1)(x, u(x))

)
+ u′(x)ξ(2,1)(x, u(x))

+u′(x)
(
u′(x)ξ(1,2)(x, u(x)) + ξ(2,1)(x, u(x))

)
+ u′(x)

(
u′′(x)ξ(0,2)(x, u(x))

+u′(x)ξ(1,2)(x, u(x)) + u′(x)
(
u′(x)ξ(0,3)(x, u(x)) + ξ(1,2)(x, u(x))

)
+ξ(2,1)(x, u(x)) + ξ(3,0)(x, u(x)) + ϕ(3,0)(x, u(x))
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APPENDIX C: COMPUTATIONAL PART OF THE PROOF OF THEOREM

6

wy =
uxx

1
x
− 1

4
ux

=
uxx

1
x
− 1

4
w

wyy =
uxxx − wy

(
− 1
x2
− 1

4
uxx
)(

1
x
− 1

4
w
)2

wyyy = (
(
uxxxx −

(
uxxx

(
− 1
x2
− 1

4
uxx
)

+ uxx
(
− 2
x3
− 1

4
uxxx

))) (
1
x
− 1

4
w
)2

= −2
(
uxxx − wy

(
− 1
x2
− 1

4
uxx
)) (

1
x
− 1

4
w
) (
− 1
x2
− 1

4
uxx
)
)/
(
1
x
− 1

4
w
)5
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APPENDIX D: PYTHON CODE WITH GEKKO SOLVER

1 !pip install gekko

2 from gekko import GEKKO

3 import numpy as np

4 import matplotlib.pyplot as plt

5 from shapely.geometry import LineString

6 import math

7

8 m = GEKKO()

9 m.time = np.linspace(0,0.0469779687,num=101)

10

11 s = 76.2

12 sigma = 1000000

13 E = 20.76

14 I = 0.00249739

15 c = 0.03

16 d = 4.572

17 K = s*sigma/(E*I)

18 B = np.log(10)/(c*d)

19

20 t = m.Var(0)

21 z1 = m.Var(0.04565)

22 z2 = m.Var(0)

23

24 m.Equation(t.dt()==1)

25 m.Equation(z1.dt()==z2)

26 m.Equation(z2.dt()==1/z1*(5/2*z2**2+K/B*m.exp(-B*t)*z1**6))

27

28 m.options.IMODE = 4

29 m.options.NODES = 3

30 m.solve()

31

32 plt.plot(t,z1,'b-',label=r'$\frac{dz_1}{dy} = z_2$')
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33 plt.plot(t,z2,'r--',label=r'$\frac{dz_2}{dy}= 5/2z_2^2z_1^{-1}+K/B\exp(-By)z_1^5$')

34 plt.ylabel('response')

35 plt.xlabel('y')

36 plt.legend(loc='best')

37 plt.show()

38

39 plt.plot(t,z1)

40 plt.xlabel('u')

41 plt.ylabel('dx/du')

42 plt.show()

43 y=t

44

45 x = [0]

46 for i in range(len(z1)-1):

47 x.append((y[i+1]-y[i])*z1[i]+x[i])

48

49 plt.plot(x,y)

50 plt.xlabel('x')

51 plt.ylabel('u')

52 plt.show()

53

54 x = [i*1000 for i in x]

55

56 yData1 = np.array([0, 7.90602967e-06, 3.14944931e-05, 7.05709520e-05,

57 1.24940968e-04, 1.94410103e-04, 2.78783918e-04, 3.77867975e-04,

58 4.91467835e-04, 6.19389061e-04, 7.61437214e-04, 9.17417856e-04,

59 1.08713655e-03, 1.27039885e-03, 1.46701033e-03, 1.67677654e-03,

60 1.89950305e-03, 2.13499542e-03, 2.38305921e-03, 2.64349998e-03,

61 2.91612329e-03, 3.20073471e-03, 3.49713979e-03, 3.80514411e-03,

62 4.12455321e-03, 4.45517267e-03, 4.79680803e-03, 5.14926488e-03,

63 5.51234876e-03, 5.88586524e-03, 6.26961987e-03, 6.66341823e-03,

64 7.06706588e-03, 7.48036837e-03, 7.90313126e-03, 8.33516012e-03,

65 8.77626052e-03, 9.22623800e-03, 9.68489814e-03, 1.01520465e-02,

66 1.06274886e-02, 1.11110301e-02, 1.16024764e-02, 1.21016333e-02,
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67 1.26083061e-02, 1.31223006e-02, 1.36434221e-02, 1.41714764e-02,

68 1.47062690e-02, 1.52476054e-02, 1.57952912e-02, 1.63491319e-02,

69 1.69089332e-02, 1.74745005e-02, 1.80456395e-02, 1.86221556e-02,

70 1.92038546e-02, 1.97905418e-02, 2.03820230e-02, 2.09781036e-02,

71 2.15785892e-02, 2.21832853e-02, 2.27919977e-02, 2.34045317e-02,

72 2.40206929e-02, 2.46402870e-02, 2.52631194e-02, 2.58889958e-02,

73 2.65177217e-02, 2.71491027e-02, 2.77829443e-02, 2.84190521e-02,

74 2.90572316e-02, 2.96972884e-02, 3.03390281e-02, 3.09822563e-02,

75 3.16267784e-02, 3.22724001e-02, 3.29189269e-02, 3.35661644e-02,

76 3.42139181e-02, 3.48619937e-02, 3.55101966e-02, 3.61583324e-02,

77 3.68062067e-02, 3.74536251e-02, 3.81003931e-02, 3.87463163e-02,

78 3.93912001e-02, 4.00348503e-02, 4.06770724e-02, 4.13176719e-02,

79 4.19564543e-02, 4.25932253e-02, 4.32277904e-02, 4.38599552e-02,

80 4.44895252e-02, 4.51163060e-02, 4.57401031e-02, 4.63607222e-02,

81 4.69779687e-02])

82

83 xData = np.array([0, 0.0254, 0.0508, 0.0762, 0.1016, 0.127, 0.1524, 0.1778, 0.2032, 0.2286,

84 0.254, 0.2794, 0.3048, 0.3302, 0.3556, 0.381, 0.4064, 0.4318, 0.4572, 0.4826,

85 0.508, 0.5334, 0.5588, 0.5842, 0.6096, 0.635, 0.6604, 0.6858, 0.7112, 0.7366,

86 0.762, 0.7874, 0.8128, 0.8382, 0.8636, 0.889, 0.9144, 0.9398, 0.9652, 0.9906,

87 1.016, 1.0414, 1.0668, 1.0922, 1.1176, 1.143, 1.1684, 1.1938, 1.2192, 1.2446,

88 1.27, 1.2954, 1.3208, 1.3462, 1.3716, 1.397, 1.4224, 1.4478, 1.4732, 1.4986,

89 1.524, 1.5494, 1.5748, 1.6002, 1.6256, 1.651, 1.6764, 1.7018, 1.7272, 1.7526,

90 1.778, 1.8034, 1.8288, 1.8542, 1.8796, 1.905, 1.9304, 1.9558, 1.9812, 2.0066,

91 2.032, 2.0574, 2.0828, 2.1082, 2.1336, 2.159, 2.1844, 2.2098, 2.2352, 2.2606,

92 2.286, 2.3114, 2.3368, 2.3622, 2.3876, 2.413, 2.4384, 2.4638, 2.4892, 2.5146,

93 2.54])

94

95 plt.plot(x,y, color = 'blue', label = 'implicit solution')

96 plt.plot(xData,yData1, color = 'black', label = 'FE solutions')

97 plt.xlabel('horizontal position x (m)')

98 plt.ylabel('beam deformation u (m)')

99 plt.legend()

100 plt.grid()
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101 plt.show()

55


	Lie Groups And Euler-Bernoulli Beam Equation
	Recommended Citation

	tmp.1626697083.pdf.Re7Bu

